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Enhanced Diffusional Separation in Liquids by 
Sinusoidal Oscillations 

ULRICH H. KURZWEG 
DEPARTMENT OF ENGINEERING SCIENCES 
UNIVERSITY OF FLORIDA 
GAINESVILLE. FLORIDA 32611 

Abstract 

A general analysis of the problem of enhanced diffusional separation of dilute 
liquid solutions contained within open ended capillary tubes and subjected to 
axial oscillations is presented. Results show that the mass diffusion flux of the 
various components is equal to the product of the molecular diffusion coefficient 
of the species in question. the magnitude of the species axial concentration 
gradient, the square of the ratio of the tidal displacement to the capillary radius, 
and a function of the Womersley number. The earlier results of Dryer are shown 
to be correct for small oscillation frequencies and tube diameters. but predict 
effective diffusion coefficients which are too low at higher Womersley numbers. 
Differential diffusion separation fluxes some six orders of magnitude larger than 
possible with the same geometry in the absence of axial oscillations appear to be 
achievable for typical aqueous solutions. 

INTRODUCTION 

In the late 1960s Lange and his colleagues ( I )  developed a method for 
separating components in dilute aqueous solutions by the use of an 
enhanced diffusion process involving the axial movement of liquids in 
and out of open ended capillary tubes while maintaining an axial 
concentration gradient for the species to be separated. Very large 
increases in effective diffusion coefficient over the values found in the 
absence of oscillations where observed. The physical mechanism for this 
enhanced diffusion is the very large increase in cross-sectional area 
which becomes available for diffusion by the formation of viscous 
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106 K U RZW EG 

boundary layers along the capillary walls during the oscillation process. 
One of the curious results found was that the axial diffusion mass flow is 
independent of both the oscillation frequency and the tube radius. 

More recently there have appeared several papers (2-5) which treat the 
general problem of enhanced diffusion produced by sinusoidal oscilla- 
tions. These studies, which were apparently unaware of the earlier work 
of Dryer ( I ) ,  clearly show that enhanced species diffusion in fluid 
mixtures is very much a function of oscillation frequency and capillary 
diameter. Indeed, recently we found (6) that enhanced diffusion by 
oscillations is a tuning process in the sense that for a given oscillation 
frequency and molecular diffusion coefficient, there will be one particu- 
lar tube radius for which the diffusion mass flow is maximized. This 
critical radius corresponds approximately to the distance the diffusing 
species diffuses in the radial direction during one-half cycle of the 
oscillation period. The tuning effect has been used most recently to 
separate components within gas mixtures (7). 

It is the purpose of the present paper to resolve the apparent 
discrepancy between the semiquantitative results of Ref. I on enhanced 
diffusion in liquids with a more rigorous analysis based on an approach 
similar to that used by Watson (4) .  We will confine our attention to 
enhanced diffusion in liquids only. This will allow considerable simplifi- 
cation in the analysis since a perturbation expansion in reciprocal 
powers of the Schmidt number (which is large for liquids) becomes 
possible. In the analysis we obtain not only the value of the enhanced 
diffusion mass flux for additives in dilute liquid solutions but also obtain 
the magnitude of the differential diffusion mass flow expected in the 
separation of multicomponent mixtures. The observation of Ref. 1 
concerning independence of tube radius and oscillation frequency on 
diffusional mass flow is shown to be correct only as long as the 
Womersley number remains small. 

FORMULATION OF THE PROBLEM 

Consider a bundle of N open-ended capillary tubes of radius r = a, 
each of which are bent into the C shape configuration shown in Fig. 1 
and connected to a two chamber reservoir separated by a movable piston. 
The average length of the capillary tubes is L, and their total cross section 
A. = Nna’, when excluding wall cross-sectional area and assuming 
blocked interstitial spaces. The left chamber @ is initially filled with a 

carrier fluid (water) while the right chamber 0 is filled with a dilute 
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108 KURZWEG 

solution containing both a light (L) and heavy (H) molecular weight 
additive within the same carrier fluid. The left and right halves of the 
capillaries are filled with the same fluid as found in the left and right 
chambers, respectively. At time t = 0 the fluid within the reservoir and 
capillaries is set into axial oscillations at angular frequency w and at a 
displacement tidal volume V,. In view of the fluid incompressibility, this 
motion leads to a tidal displacement within the capillary tubes of 
Ax = VJA0 which is kept at less than L/2 in order to insure that there will 
be no direct convective interchange of fluids between the two chambers 
under the assumed laminar flow conditions. After a short transient, this 
type of oscillatory motion within the described configuration will lead to 
enhanced axial diffusional flows along the capillaries in the presence of 
essentially constant axial concentration gradients determined by the 
time-dependent concentration difference of each particular species in 
question between the two chambers. 

Neglecting end effects, it is easy to show (see Ref. 8) that the periodic 
axial laminar velocity profile within each of the capillaries will be 

where h = a21dp/dxl /pvUo is the nondimensional pressure gradient 
maximum acting along the capillaries, a = a@ is the Womersley 
number measuring the ratio of inertia to viscous forces, v is the fluid 
kinematic viscosity here taken as that of the carrier liquid, p is the fluid 
density, Uo is a representative velocity, and q = r/u is the nondimensional 
radial distance. Note that it is the real part of Eq. (1) which presents the 
actual axial velocity. Graphs for the real part of U(qf)  for several different 
values of a have been obtained by Uchida (9). Suffice it here to point out 
that the time-independent portion f(q) above reduces to the familiar 
Poiseuille parabolic profile as the Womersley number becomes much 
less than unity while it has the form of a constant velocity core bounded 
by a boundary layer of thickness 6 = at the tube wall for large a. 
An interesting alternative to the velocity field representation given by Eq. 
(1) is the Lagrangian displacement 5 for fluid elements within the 
capillaries. For the case of the fluid elements initially lined up at axial 
position x = 0, halfway between the tube ends, one has the Lagrangian 
displacement 
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ENHANCED DIFFUSIONAL SEPARATION IN LIQUIDS 109 

which is plotted in Fig. 2 at time intervals of cot = 30" for the particular 
case of a = 10 in unit lenghts of U,Ucoa2. Note that, even for this 
moderate value for the Womersley number, the profile departs considera- 
bly from the standard parabolic shape and shows signs of a boundary 
layer structure. We have also indicated in Fig. 2 the cross-stream averaged 
tidal displacement Ax. This can be defined as above or in the mathe- 
matical form 

which, on integration, yields 

and can in turn be expressed more conveniently as 

AX = - 
1 ,  " A  I 2 

a 
1 + -F(a)I 

- pa' 
2 

where F(a) is the complex function 

ber' a + i bei' a 
bera  + i beia  1 F(a) = F,(a) + iF,(a) = i 

with Jo &a) = ber a + i bei a representing the Kelvin functions and the 
prime denoting differentiation. An evaluation of function F(a) is given in 
Fig. 3 together with some numerical values obtained directly from tables 
given in Ref. 10. The limiting forms of F(a) are 
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FIG. 2. Fluid element displacement at time intervals of cot = 30" throughout the oscillation 
cycle. Here a = 10, and values are expressed in length units of Uoh/oaz. 
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FIG. 3.  Plot of the function F(a) as a function of Womersley number. 

From this last result and Eq. (5 ) ,  it follows that the tidal displacement is 
related to the maximum of the periodic pressure gradient by 

Note, from Eq. (8), that the axial pressure gradient can become large for 
fixed tidal displacement as the oscillation frequency becomes large. 
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112 KURZWEG 

CONCENTRATION VARIATION AND TIME AVERAGED AXIAL 
DIFFUSION MASS FLUX 

Having obtained the velocity and displacement fields within the 
oscillatory flow under consideration, we are now in the position to 
determine the concentration distribution for the light and heavy additives 
within the carrier fluid along the capillary bundle. The governing 
equation here is 

where C(q,x,t) is the mass concentration in &cm3 of the particular species 
in question, x is the axial distance along the capillaries with x = +L/2 
andx = -L/2 denoting the ends, and D is the appropriate mass diffusion 
coefficient. To solve this equation we make use of the locally valid 
Chatwin approximation (2), 

where y is the time-averaged local concentration gradient. Although this 
approximation is likely to be invalid near the capillary ends because of 
the convective mixing which occurs there with the fluid in the reservoir, it 
is still a reasonable a roximation that in most of the central portion of 
the capillary y = (C[ 6 ] - C[ @ ] ] /L ,  as we will assume later when 
estimating the differential diffusion mass flows between the two com- 
partments of the fluid reservoir. 

Although an exact solution of Eq. (9) subjected to restriction (10) is 
possible (see Refs. 4 or 7), we can avoid many of the complications 
associated with such a solution by noting that one is here dealing with 
diffusion in liquids where the Schmidt number, defined as S = v/D, is 
about 1000 and hence a large parameter. Accordingly, the differential 
equation for g(q), which has the form 

d2g 1 dg 
__ + - - = S[ia2g +fRe] 
dr12 rl d ,  

can be solved by the regular perturbation expansion 
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ENHANCED DIFFUSIONAL SEPARATION IN LIQUIDS 113 

which cannot be made to satisfy the standard nonpenetration condition 
dgldq = 0 at the wall, but should yield a very close approximation over 
the rest of the capillary cross-section. Such a perturbation expansion 
carried out to order 1/S yields the concentration 

and thus contains the Kelvin function terms only implicity throughf(q). 
The Reynolds number appearing in Eqs. (11) and (13) is defined as 
Re = U,a/v. 

The instantanious axial mass flux produced by the sinusoidal oscilla- 
tions of fluid within the capillaries is, upon neglecting the small effect of 
direct axial diffusion, equal to 

On integrating this quantity over one cycle of the oscillations, the 
following, time-independent, mass diffusion flux is obtained: 

Substituting the values of f ( q )  and g(q)  from Eqs. (1) and (13), 
respectively, and carrying out the indicated integration, yields 

yDRe2A2 
j = [ Q 7  ] F ~  

or, with the use of Eq. (5 ) ,  the sought after and surprisingly simple 
result 

where 
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114 KURZWEG 

Applying the standard Ficks law to Eq. (17), one sees that this result is 
the same as saying that the oscillatory convention-diffusion process 
considered here is equivalent to enhanced axial diffusion through a 
quiescent fluid with an effective diffusion coefficient of 

which can easily be orders of magnitude larger than D. This last result 
has the asymptotic forms 

where 6 = is again the viscous boundary layer thickness. A plot of 
Eq. (18) is found in Fig. 4. Note that the small a result indicates that the 
total effective diffusion mass flow J = j A ,  is indeed independent of tube 
radius and frequency as found by Dryer et al. (I), whenever the 
Womersley number is less than about 3. However, this conclusion no 
longer holds at large a where the time averaged mass flow and mass 
diffusion flux are proportional to the square root of oscillation frequency. 
This departure from earlier predictions has clearly to do with the 
existence of much thinner boundary layers occurring at higher a (see Fig. 
2) than the simple parabolic profile assumption made in the semi- 
quantative analysis presented in Ref. I. To achieve large effective 
diffusion coefficients and hence large axial diffusion flux, it will be of 
advantage to run experiments at large values of (Axla), large axial 
concentration gradients, and large Womersley numbers. 

ENHANCED MULTICOMPONENT DIFFUSIONAL SEPARATION 
IN LIQUIDS 

The result given by Eq. (17) can be used directly to determine the 
differential diffusional mass flow possible in the configuration shown 
Fig. 1. Assuming a dilute mixture of a light and heavier molecular 
additive in an aqueous carrier such that the hydrodynamic character- 
istics are essentially determined by the carrier, one has 
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FIG. 4. Mass diffusion flux J as a function of Womersley number. 

where the products yD is the product of the time-averaged axial 
concentration gradient which decreases in time and the molecular 
diffusion coefficient of the species indicated by the subscript L (light) or 
H (heavy). Whenever the diffusion coefficients, DL and DH differ from 
each other, which is generally the case when the two species differ in 
molecular weight, a partial enrichment of the heavier species will occur 
in the right chamber while the left chamber will become partially 
enriched in the lighter (and hence higher D) species. Note that to 
conserve total mass, the diffusional movement of the L and H species 
through the capillaries from the right to left chamber will be accom- 
panied by a counterdiffusional flow from left to right of the carrier liquid. 
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Also, if the diffusion process is allowed to be continued for a very long 
time, the final state will be one of complete mixing with zero remaining 
separation. Accordingly, in a functioning separation device based on the 
present process the running time would be only about as long as needed 
to remove about half of the lighter species from the right chamber. At that 
point the enriched fluid would be drained from the system and the carrier 
fluid removed by absorption or freezing before moving the remaining 
fluid on to the next separation stage. To obtain commercially desirable 
large separation mass flows it would be of advantage to have a large total 
cross-section A .  of the capillary bundle while at the same time keeping 
the individual radii r = a small. 

As a sample calculation for obtainable differential mass flows, 
consider the case of a 1% concentration C,( @ ) = CH(@) = 0.01 g/cm’ 
of two additives with DL = 1 X g/cm’ 
in an  aqueous solution. Let the total cross-section be A ,  = 100 cm2 and 
the individual capillaries have 2 mm diameter and 200 cm length. The 
tidal displacement is taken as 100 cm, the oscillation frequency as o/ 
2n = 10 Hz, and the carrier kinematic viscosity is v = 0.01 cm2/s. These 
conditions correspond to a Womersley number of a = 7.9 and yield, via 
Eq. (21), JL = 0.08 g/s, JH = 0.04 g/s with a AJ = 0.04 g/s. 

Although these mass flows are still quite small compared to normal 
convection flows, they are some 1.6 X lo6 times larger than achievable for 
the same geometry in the absence of oscillations. The maximum 
oscillator pressure difference required between the capillary ends for the 
above example would be, according to Eq. (8), 39 atm. This is a quite large 
value but not inconsistent with the even higher pressure difference 
encountered in liquid chromatography. Note that we have also assumed 
in this sample calculation that the oscillatory flow remains laminar. Such 
may not always be the case at higher Womersley numbers and large AXa 

g/cm’ and DH = 0.5 X 

(11). 

CONCLUDING REMARKS 

We have shown that separation in liquids can be accomplished at 
relatively high differential diffusion mass flow rates by oscillating liquid 
mixtures in capillaries while maintaining axial concentration gradients. 
The results show that the effective axial diffusion coefficient is equal to 
the product of the molecular diffusion coefficient of the species in 
question, the square of the ratio of the tidal displacement to the capillary 
radius, and to a montonically increasing function of Womersley number. 
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The process works with any carrier fluid and should be especially useful 
in the separation of high molecular weight species such as proteins and 
colloids, which are presently difficult to separate in large quantities by 
other means such as electrophoresis. In addition, this type of enhanced 
diffusional separation may find application for use in conjunction with 
other separation methods such as field-flow fractionation (12). 
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