This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

s e STEVEN . CRANG Separation Science and Technology
Publication details, including instructions for authors and subscription information:
SEPARATION SCIENCE

http://www.informaworld.com/smpp/title~content=t713708471

Enhanced Diffusional Separation in Liquids by Sinusoidal Oscillations
S— . | Ulrich H. Kurzweg®
a DEPARTMENT OF ENGINEERING SCIENCES, UNIVERSITY OF FLORIDA, GAINESVILLE,
FLORIDA

To cite this Article Kurzweg, Ulrich H.(1988) 'Enhanced Diffusional Separation in Liquids by Sinusoidal Oscillations',
Separation Science and Technology, 23: 1, 105 — 117

To link to this Article: DOI: 10.1080/01496398808057637
URL: http://dx.doi.org/10.1080/01496398808057637

PLEASE SCROLL DOWN FOR ARTICLE

Full terns and conditions of use: http://wwinformworld.coniterns-and-conditions-of-access. pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or danmmges whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713708471
http://dx.doi.org/10.1080/01496398808057637
http://www.informaworld.com/terms-and-conditions-of-access.pdf

13: 07 25 January 2011

Downl oaded At:

SEPARATION SCIENCE AND TECHNOLOGY, 23(1-3), pp. 105-117, 1988

Enhanced Diffusional Separation in Liquids by
Sinusoidal Oscillations

ULRICH H. KURZWEG

DEPARTMENT OF ENGINEERING SCIENCES
UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA 32611

Abstract

A general analysis of the problem of enhanced diffusional separation of dilute
liquid solutions contained within open ended capillary tubes and subjected to
axial oscillations is presented. Results show that the mass diffusion flux of the
various components is equal to the product of the molecular diffusion coefficient
of the species in question, the magnitude of the species axial concentration
gradient, the square of the ratio of the tidal displacement to the capillary radius,
and a function of the Womersley number. The earlier results of Dryer are shown
to be correct for small oscillation frequencies and tube diameters, but predict
effective diffusion coefficients which are too low at higher Womersley numbers.
Differential diffusion separation fluxes some six orders of magnitude larger than
possible with the same geometry in the absence of axial oscillations appear to be
achievable for typical aqueous solutions.

INTRODUCTION

In the late 1960s Lange and his colleagues (/) developed a method for
separating components in dilute aqueous solutions by the use of an
enhanced diffusion process involving the axial movement of liquids in
and out of open ended capillary tubes while maintaining an axial
concentration gradient for the species to be separated. Very large
increases in effective diffusion coefficient over the values found in the
absence of oscillations where observed. The physical mechanism for this
enhanced diffusion is the very large increase in cross-sectional area
which becomes available for diffusion by the formation of viscous
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boundary layers along the capillary walls during the oscillation process.
One of the curious results found was that the axial diffusion mass flow is
independent of both the oscillation frequency and the tube radius.

More recently there have appeared several papers (2-5) which treat the
general problem of enhanced diffusion produced by sinusoidal oscilla-
tions. These studies, which were apparently unaware of the earlier work
of Dryer (I), clearly show that enhanced species diffusion in fluid
mixtures is very much a function of oscillation frequency and capillary
diameter. Indeed, recently we found (6) that enhanced diffusion by
oscillations is a tuning process in the sense that for a given oscillation
frequency and molecular diffusion coefticient, there will be one particu-
lar tube radius for which the diffusion mass flow is maximized. This
critical radius corresponds approximately to the distance the diffusing
species diffuses in the radial direction during one-half cycle of the
oscillation period. The tuning effect has been used most recently to
separate components within gas mixtures (7).

It is the purpose of the present paper to resolve the apparent
discrepancy between the semiquantitative results of Ref. I on enhanced
diffusion in liquids with a more rigorous analysis based on an approach
similar to that used by Watson (4). We will confine our attention to
enhanced diffusion in liquids only. This will allow considerable simplifi-
cation in the analysis since a perturbation expansion in reciprocal
powers of the Schmidt number (which is large for liquids) becomes
possible. In the analysis we obtain not only the value of the enhanced
diffusion mass flux for additives in dilute liquid solutions but also obtain
the magnitude of the differential diffusion mass flow expected in the
separation of multicomponent mixtures. The observation of Ref. !
concerning independence of tube radius and oscillation frequency on
diffusional mass flow is shown to be correct only as long as the
Womersley number remains small.

FORMULATION OF THE PROBLEM

Consider a bundle of N open-ended capillary tubes of radius r = a,
each of which are bent into the C shape configuration shown in Fig. 1
and connected to a two chamber reservoir separated by a movable piston.
The average length of the capillary tubes is L, and their total cross section
A, = Nna?, when excluding wall cross-sectional area and assuming

blocked interstitial spaces. The left chamber @ is initially filled with a
carrier fluid (water) while the right chamber @ is filled with a dilute
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solution containing both a light (L) and heavy (H) molecular weight
additive within the same carrier fluid. The left and right halves of the
capillaries are filled with the same fluid as found in the left and right
chambers, respectively. At time ¢ = 0 the fluid within the reservoir and
capillaries is set into axial oscillations at angular frequency w and at a
displacement tidal volume V7. In view of the fluid incompressibility, this
motion leads to a tidal displacement within the capillary tubes of
Ax = Vy/A, which is kept at less than L/2 in order to insure that there will
be no direct convective interchange of fluids between the two chambers
under the assumed laminar flow conditions. After a short transient, this
type of oscillatory motion within the described configuration will lead to
enhanced axial diffusional flows along the capillaries in the presence of
essentially constant axial concentration gradients determined by the
time-dependent concentration difference of each particular species in
question between the two chambers.

Neglecting end effects, it is easy to show (see Ref. 8) that the periodic
axial laminar velocity profile within each of the capillaries will be

_ —iAU [ _ Jl/ —ian) | i
v = =g [1 To(v/ =i0) ]e

Uof (n)e™" ()

where A = a’|op/ox|/pvU, is the nondimensional pressure gradient
maximum acting along the capillaries, a = ay/®/v is the Womersley
number measuring the ratio of inertia to viscous forces, v is the fluid
kinematic viscosity here taken as that of the carrier liquid, p is the fluid
density, U, is a representative velocity, and n = r/a is the nondimensional
radial distance. Note that it is the real part of Eq. (1) which presents the
actual axial velocity. Graphs for the real part of U(n,) for several different
values of a have been obtained by Uchida (9). Suffice it here to point out
that the time-independent portion f(n) above reduces to the familiar
Poiseuille parabolic profile as the Womersley number becomes much
less than unity while it has the form of a constant velocity core bounded
by a boundary layer of thickness 8 = /2v/w at the tube wall for large a.
An interesting alternative to the velocity field representation given by Eq.
(1) is the Lagrangian displacement & for fluid elements within the
capillaries. For the case of the fluid elements initially lined up at axial
position x = 0, halfway between the tube ends, one has the Lagrangian
displacement
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En.1) = fo "Unaydr 2)

which is plotted in Fig. 2 at time intervals of wr = 30° for the particular
case of a =10 in unit lenghts of UpM/wa®. Note that, even for this
moderate value for the Womersley number, the profile departs considera-
bly from the standard parabolic shape and shows signs of a boundary
layer structure. We have also indicated in Fig. 2 the cross-stream averaged
tidal displacement Ax. This can be defined as above or in the mathe-
matical form

_ AU [ d
Ax == IL nf(n)dn| (3)

which, on integration, yields

20U 2 Ji(/-iw)
Ax = 1- ! 4
= T e a i) @

and can in turn be expressed more conveniently as

192
0z

Ax =

11+ 2F()] (5)

where F(a) is the complex function

ber’ a + i bei’ a
«——“] (6)

- i _
F(a) = Fy(a) + iF,(a) l[bera +ibeia

with J,v/—ia) = ber a + i bei a representing the Kelvin functions and the
prime denoting differentiation. An evaluation of function F(a) is given in
Fig. 3 together with some numerical values obtained directly from tables
given in Ref. 0. The limiting forms of F(a) are

+ia~, o<1

Fla) = (7
————+i(—1——-i), a>1
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4 n=r/a

14

F1G. 2. Fluid element displacement at time intervals of wr = 30° throughout the oscillation
cycle. Here a = 10, and values are expressed in length units of Upt/wa’.
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Fi1G. 3. Plot of the function F(a) as a function of Womersley number.

From this last result and Eq. (5), it follows that the tidal displacement is
related to the maximum of the periodic pressure gradient by

5] 1
ll ~a? a <1

Ax = 1"2 8 5 (8)
Epoo2 l—%, a> 1

Note, from Eq. (8), that the axial pressure gradient can become large for
fixed tidal displacement as the oscillation frequency becomes large.
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CONCENTRATION VARIATION AND TIME AVERAGED AXIAL
DIFFUSION MASS FLUX

Having obtained the velocity and displacement fields within the
oscillatory flow under consideration, we are now in the position to
determine the concentration distribution for the light and heavy additives
within the carrier fluid along the capillary bundle. The governing
equation here is

[ac v 9C] _ pf1 2 (y 9, 2]
“[at tufen G| =Dl (n 5 ) v eSS ©

where C(n,x,?) is the mass concentration in g/cm? of the particular species
in question, x is the axial distance along the capillaries with x = +L/2
and x = —L/2 denoting the ends, and D is the appropriate mass diffusion
coefficient. To solve this equation we make use of the locally valid
Chatwin approximation (2),

C(nx,t) = yix + ag(n)e™} (10)

where v is the time-averaged local concentration gradient. Although this
approximation is likely to be invalid near the capillary ends because of
the convective mixing which occurs there with the fluid in the reservoir, it
is still a reasonable approximation that in most of the central portion of
the capillary v = {C]| ] - C[@]}/L, as we will assume later when
estimating the differential diffusion mass flows between the two com-
partments of the fluid reservoir.

Although an exact solution of Eq. (9) subjected to restriction (10) is
possible (see Refs. 4 or 7), we can avoid many of the complications
associated with such a solution by noting that one is here dealing with
diffusion in liquids where the Schmidt number, defined as S = v/D, is
about 1000 and hence a large parameter. Accordingly, the differential
equation for g(n), which has the form

dg , ldg

an " ndn = Slia’s + fRe] (1

can be solved by the regular perturbation expansion

£01) = o) + G&i() + grgaW) + < - (12)
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which cannot be made to satisfy the standard nonpenetration condition
dg/dn = 0 at the wall, but should yield a very close approximation over
the rest of the capillary cross-section. Such a perturbation expansion
carried out to order 1/S yields the concentration

Clnocd) = Y{x+a[_ MRe | iRef(n) (1 4 s)] m,} (13)

a*S a

and thus contains the Kelvin function terms only implicity through f(n).
The Reynolds number appearing in Eqgs. (11) and (13) is defined as
Re = Ua/v.

The instantanious axial mass flux produced by the sinusoidal oscilla-
tions of fluid within the capillaries is, upon neglecting the small effect of
direct axial diffusion, equal to

j@= 2J; NUof(M)e|x[C(nx,tldn  (g/s - cm?) (14)

On integrating this quantity over one cycle of the oscillations, the
following, time-independent, mass diffusion flux is obtained:

j = atUs  nlaga + figilan (15)

Substituting the values of f(n) and g(n) from Egs. (1) and (13),
respectively, and carrying out the indicated integration, yields

242
[-——YD‘;" A ]F, (16)

or, with the use of Eq. (5), the sought after and surprisingly simple
result

j=v0(2) @ (17)

where

aF,(a)

T(a) = > 2
4l + EF(Q)I

(18)
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Applying the standard Fick’s law to Eq. (17), one sees that this result is
the same as saying that the oscillatory convention-diffusion process
considered here is equivalent to enhanced axial diffusion through a
quiescent fluid with an effective diffusion coefficient of

Ax

Dy = D(—a—>2T(a) (19)

which can easily be orders of magnitude larger than D. This last result
has the asymptotic forms

%, a<l
D = DAX? (20)
2111_6’ a>1

where § = \/2v/w is again the viscous boundary layer thickness. A plot of
Eg. (18) is found in Fig. 4. Note that the small a result indicates that the
total effective diffusion mass flow J = jA4, is indeed independent of tube
radius and frequency as found by Dryer et al. (/), whenever the
Womersley number is less than about 3. However, this conclusion no
longer holds at large a where the time averaged mass flow and mass
diffusion flux are proportional to the square root of oscillation frequency.
This departure from earlier predictions has clearly to do with the
existence of much thinner boundary layers occurring at higher a (see Fig.
2) than the simple parabolic profile assumption made in the semi-
quantative analysis presented in Ref. 1. To achieve large effective
diffusion coefficients and hence large axial diffusion flux, it will be of
advantage to run experiments at large values of (Ax/a), large axial
concentration gradients, and large Womersley numbers.

ENHANCED MULTICOMPONENT DIFFUSIONAL SEPARATION
IN LIQUIDS

The result given by Eq. (17) can be used directly to determine the
differential diffusional mass flow possible in the configuration shown
Fig. 1. Assuming a dilute mixture of a light and heavier molecular
additive in an aqueous carrier such that the hydrodynamic character-
istics are essentially determined by the carrier, one has
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FiG. 4. Mass diffusion flux J as a function of Womersley number.

AT = Ao =i = D= veDuldo B T@ e

where the products yD is the product of the time-averaged axial
concentration gradient which decreases in time and the molecular
diffusion coefficient of the species indicated by the subscript L (light) or
H (heavy). Whenever the diffusion coefficients, D; and Dy differ from
each other, which is generally the case when the two species differ in
molecular weight, a partial enrichment of the heavier species will occur
in the right chamber while the left chamber will become partially
enriched in the lighter (and hence higher D) species. Note that to
conserve total mass, the diffusional movement of the L and H species
through the capillaries from the right to left chamber will be accom-
panied by a counterdiffusional flow from left to right of the carrier liquid.
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Also, if the diffusion process is allowed to be continued for a very long
time, the final state will be one of complete mixing with zero remaining
separation. Accordingly, in a functioning separation device based on the
present process the running time would be only about as long as needed
to remove about half of the lighter species from the right chamber. At that
point the enriched fluid would be drained from the system and the carrier
fluid removed by absorption or freezing before moving the remaining
fluid on to the next separation stage. To obtain commercially desirable
large separation mass flows it would be of advantage to have a large total
cross-section 4, of the capillary bundle while at the same time keeping
the individual radii » = a small.

As a sample calculation for obtainable differential mass flows,

consider the case of a 1% concentration C,( @ )= CH(@) =0.01 g/cm’

of two additives with D, = 1 X 10~ g/cm® and Dy = 0.5 X 107° g/cm’
in an aqueous solution. Let the total cross-section be 4, = 100 cm’ and
the individual capillaries have 2 mm diameter and 200 cm length, The
tidal displacement is taken as 100 cm, the oscillation frequency as o/
2n = 10 Hz, and the carrier kinematic viscosity is v = 0.01 cm?/s. These
conditions correspond to a Womersley number of a. = 7.9 and yield, via
Eq. (21),J, = 0.08 g/s, Jy = 0.04 g/s with a AJ = 0.04 g/s.

Although these mass flows are still quite small compared to normal
convection flows, they are some 1.6 X 10° times larger than achievable for
the same geometry in the absence of oscillations. The maximum
oscillator pressure difference required between the capillary ends for the
above example would be, according to Eq. (8), 39 atm. This is a quite large
value but not inconsistent with the even higher pressure difference
encountered in liquid chromatography. Note that we have also assumed
in this sample calculation that the oscillatory flow remains laminar. Such
Enay not always be the case at higher Womersley numbers and large Axa
11).

CONCLUDING REMARKS

We have shown that separation in liquids can be accomplished at
relatively high differential diffusion mass flow rates by oscillating liquid
mixtures in capillaries while maintaining axial concentration gradients.
The results show that the effective axial diffusion coefficient is equal to
the product of the molecular diffusion coefficient of the species in
question, the square of the ratio of the tidal displacement to the capillary
radius, and to a montonically increasing function of Womersley number.
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The process works with any carrier fluid and should be especially useful
in the separation of high molecular weight species such as proteins and
colloids, which are presently difficult to separate in large quantities by
other means such as electrophoresis. In addition, this type of enhanced
diffusional separation may find application for use in conjunction with
other separation methods such as field-flow fractionation (12).

Acknowledgments

1 wish to acknowledge the contributions of G. Zhang in obtaining the
computer solution for the Lagrangian displacement trajectories shown in
Fig. 2 and to express.my thanks to David Rahdert of the University of
Utah for first calling my attention to the separation studies of Lange and
his colleagues.

Part of this work was conducted under Grant CBT-86112544 with the
National Science Foundation. This support is gratefully acknowledged.

REFERENCES

G. Dreyer, E. Kahrig, D. Kirstein, J. Erpenbeck, and F. Lange. Z. Naturforsch., 23a, 498

(1968).

P. C. Chatwin, J. Fluid Mech., 71, 513 (1975).

M. J. Jaeger and U. H. Kurzweg, Phys. Fluids, 26, 1380 (1983).

. E. Watson, J. Fluid Mech., 133, 233 (1983).

C. H. Joshi, R. D. Kamm, J. M. Drazen, and A. S. Slutsky, /bid., 133, 245 (1983).

U. H. Kurzweg and M. 1. Jaeger, Phys. Fluids, 29, 1324 (1986).

U. H. Kurzweg and M. J. Jaeger, Ibid., 30, 1023 (1987).

. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1968, p. 419.

. S. Uchida, Z. Angew. Math. Phy., 7, 403 (1956).

. M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions, Dover, New
York, 1972, pp. 379-384.

11. P. Merkli and H. Thomann, J. Fluid Mech., 68, 567 (1975).

12. E. Grushka, K. D. Caldwell, M. N. Myers, and J. C. Giddings, Sep. Purif. Methods, 2, 127

(1973).

~

SN A NN

Received by editor January 16, 1987



